# AQA A-Level Physics: Electric Fields – Complete Calculation Solutions

Praneel Physics

1. Calculate the force between two  $+5\,\mu\mathrm{C}$  charges 3 cm apart. (P)

Working and Answer:

$$F = \frac{kq_1q_2}{r^2} = \frac{(8.99 \times 10^9)(5 \times 10^{-6})^2}{(0.03)^2}$$
$$= \frac{224.75}{0.0009} = 249,722 \,\text{N}$$
$$= \boxed{2.50 \times 10^5 \,\text{N (repulsive)}}$$

2. Determine the electric field 2 cm from a -10 nC point charge. (P) Praineel Philipsics 

Praineel Philips

$$E = \frac{k|q|}{r^2} = \frac{(8.99 \times 10^9)(10 \times 10^{-9})}{(0.02)^2}$$

$$= \frac{89.9}{0.0004} = \frac{224,750 \text{ N/C}}{225 \times 10^5 \text{ N/C (toward charge)}}$$

P. P. Allie C. P. M. Y.

P. F. O.S.

atheel Physics

3. Calculate the potential at 5 cm from a +8 nC charge, (P) 
$$V = \frac{kq}{71.92} = \frac{(8.99 \times 10^6)(8 \times 10^{-9})}{0.05} = \frac{71.92}{91.438} = \frac{14.444 \text{ NV}}{14.444 \text{ NV}}$$

P. F. O. F.

aineel Physics

Praineel Philips

4. A 
$$0.5\,\mu\mathrm{C}$$
 charge experiences 10 N force in an electric field. Find the field strength. (P) 
$$E = \frac{F}{q} \frac{10}{0.5 \times 10^{-6}} = 2.0 \times 10^{7} \,\mathrm{N/C}$$
 
$$= \frac{2.0 \times 10^{7} \,\mathrm{N/C}}{2.0 \times 10^{7} \,\mathrm{N/C}}$$

P. F. O.S.

Praineel Philipsics

5. Two parallel plates are 2 mm apart with 100 V across them. Find the electric field strength. (P) Rialicol

aneel Pinysics

Praineel Philipsics

Working and Answer: 
$$E = \frac{V}{d} = \frac{100}{0.002}$$

$$= 50.000 \, \text{N/C}$$

$$= [50 \, \text{kN/C}]$$

Praineel Philips

6. Calculate the work done moving a  $+3\,\mu\mathrm{C}$  charge through 12 V. (I Praineel Philysics Praineel Piny's

atheel Phrising

Praineel Philysics

We gV = 
$$(3 \times 10^{-6})(12)$$
  
 $= 36 \times 10^{-6}$  J  
 $= \sqrt{36 \mu J}$ 

Rian

Phis

Praineel Philipsics

raineel Philis cm in .ic field 7. A  $+2\,\mu\mathrm{C}$  charge moves 25 cm in a uniform electric field of 400 N/C. Calculate the work done. (PP)raineel Ri

Rivar

Praineel Philips

Phus

ratheel Rings.

Praineel Philips

ver:  

$$F = qE = (2 \times 10^{-6})(400) = 8 \times 10^{-4} \text{ N}$$

$$W = Fd = (8 \times 10^{-4})(0.25) = 2 \times 10^{-4} \text{ J}$$

$$= \boxed{0.2 \text{ mJ}}$$

Praineel. Philips

8. Find the acceleration of an electron ( $m_e=9.11\times 10^{-31}\,\mathrm{kg}$ ) in a 500 N/C electric field. (PP) 

Working and Answer:
$$F = qE = (1.6 \times 10^{-19})(500) = 8 \times 10^{-17} \text{N}$$

$$a = \frac{F}{m} = \frac{8 \times 10^{-17}}{9.11 \times 10^{-31}}$$

$$= 8.78 \times 10^{13} \text{m/s}^2$$

$$= \boxed{8.8 \times 10^{13} \text{m/s}^2}$$

9. Two charges  $(+4\,\mu\mathrm{C}$  and  $-6\,\mu\mathrm{C})$  are 8 cm apart. Find the force between them, (PP) P. r. alile aneelPi

aineel Philipsics

Praineel Pinysires

Working and Answer:
$$F = \frac{k[n_1 n_2]}{r^2} = \frac{(8.99 \times 10^9)(4 \times 10^{-6})(6 \times 10^{-9})}{(0.08)^2}$$

$$= \frac{215.76}{9.0064} = 33.712.5 \text{ N}$$

$$= \boxed{33.7 \text{ N (attractive)}}$$

Praineel Philis 10. A 3 cm diameter sphere carries 50 nC charge. Find the electric field at its surface. (PP)

Praineel Pinysires

Working and Answer:
$$F = \frac{k|q|}{r^2} = \frac{(8.99 \times 10^9)(50 \times 10^{-9})}{(0.015)^2}$$

$$= 1.998 \times 10^9 \text{ N/C}$$

$$= 2.0 \times 10^9 \text{ N/C}$$

Praineel Philipsics

11. Calculate the final speed of a proton  $(m_p=1.67\times 10^{-27}\,\mathrm{kg})$  accelerated through 1 kV. (PP) 

Working and Answer:
$$KE = qV = (1.6 \times 10^{-19})(1000) = 1.6 \times 10^{-16} \text{ J}$$

$$v = \sqrt{\frac{2KE}{m^-}} \neq \sqrt{\frac{3.2 \times 10^{-16}}{1.67 \times 10^{-27}}}$$

$$= 4.38 \times 10^5 \text{ m/s}$$

$$= |438 \text{ km/s}|$$

Alle el Pinis ei ce

12. Find the potential energy of a 
$$+5p$$
C and  $-3\mu$ C pair separated by 4 cm. (PP)

$$v = \frac{k_B q_B}{r} = \frac{(8.99 \times 10^9)(5 \times 10^{-9})(-3 \times 10^{-9})}{0.01} = \frac{-3.371}{-3.371}$$

R. C.S.

raineel Physic 13. A  $+3\,\mu\mathrm{C}$  charge moves from 200 V to 800 V. If its mass is 0.5 g, calculate its final kinetic energy and speed. (PPP) raineel Pi raineel R

Working and Answer:

# Solution:

Step 1: Work done = 
$$q\Delta V = (3 \times 10^{-6})(600) = 1.8 \,\text{mJ}$$

Step 2: Kinetic energy = 
$$Work = 1.8 \, mJ$$

Step 3: Speed = 
$$\sqrt{\frac{2KE}{m}} = \sqrt{\frac{3.6 \times 10^{-3}}{0.5 \times 10^{-3}}}$$
  
=  $\sqrt{7.2} = 2.68 \,\text{m/s}$   
=  $2.68 \,\text{m/s}$ 

aineel Philis

PINASICS

14. Three charges form a right triangle:  $+2\,\mu\mathrm{C}$  at (0,0),  $+3\,\mu\mathrm{C}$  at  $(4\,\mathrm{cm},0)$ , and  $-5\,\mu\mathrm{C}$  at  $(0,3\,\mathrm{cm})$ . Find the net force on the  $+2\,\mu\mathrm{C}$  charge. (PPP)

Working and Answer:

# Solution:

Step 1: Calculate 
$$F_{12} = \frac{(8.99 \times 10^9)(2 \times 10^{-6})(3 \times 10^{-6})}{(0.04)^2} = 33.71 \,\text{N (right)}$$
  
Step 2: Calculate  $F_{13} = \frac{(8.99 \times 10^9)(2 \times 10^{-6})(5 \times 10^{-6})}{(0.03)^2} = 99.89 \,\text{N (up)}$ 

Step 3: Net force = 
$$\sqrt{33.71^2 + 99.89^2} = 105.4 \,\mathrm{N}$$
 at  $71.6^\circ$   
=  $105 \,\mathrm{N}$  at  $71.6^\circ$  above +x-axis

aineel Philis

15. A parallel plate capacitor has 1 cm spacing and 200 V across it. A  $+1\,\mu\mathrm{C}$  charge (mass  $= 2 \,\mathrm{mg}$ ) is released from rest at the positive plate. Calculate its speed at the negative plate. (PPP)

Working and Answer:

ing and Answer:

Step 1: Field strength = 
$$\frac{200}{0.01} = 20,000 \,\text{N/C}$$

Step 2: Acceleration =  $\frac{qE}{m} = \frac{(1 \times 10^{-6})(20,000)}{2 \times 10^{-6}} = 10,000 \,\text{m/s}^2$ 

Step 3: Final speed =  $\sqrt{2ad} = \sqrt{2(10,000)(0.01)} = \sqrt{200}$ 

=  $\boxed{14.1 \,\text{m/s}}$ 

raineel Philis 16. Calculate the capacitance of two  $0.5\,\mathrm{m}^2$  plates separated by  $2\,\mathrm{mm}$  with a dielectric ( $\kappa=4$ ) raineel Ri raineel Ri between them. (PPP)

Working and Answer:

### Solution:

ion: Step 1: Without dielectric = 
$$\frac{\epsilon_0 A}{d} = \frac{(8.85 \times 10^{-12})(0.5)}{0.002} = 2.21 \,\text{nF}$$
Step 2: With dielectric =  $\kappa C_0 = 4(2.21 \,\text{nF})$ 
Step 3: Final capacitance =  $8.84 \,\text{nF}$ 

Step 2: With dielectric = 
$$\kappa C_0 = 4(2.21 \,\text{nF})$$

Step 3: Final capacitance = 
$$8.84 \,\mathrm{nF}$$

Praineel Philips

raineel Philipsics

PINASICS

2 raineel Philis

raineel Pinisé 17. A  $100\,\mu\mathrm{F}$  capacitor is charged to  $50\,\mathrm{V}$ . Calculate the energy stored and the charge on each plate. (PPP)

aineel Philippics

Praineel Pinys

Step 1: Energy =  $\frac{1}{2}CV^2 = \frac{1}{2}(100 \times 10^{-6})(50)^2 = 125 \,\text{mJ}$ 

e all eel Philis

R. a.i.i.e.e.

Physic

Praince Philipsics

Step 2: Charge =  $\overline{CV} = (100 \times 10^{-6})(50) = 5 \,\text{mC}$ 

Step 3: Results =  $125 \,\mathrm{mJ}$  energy,  $5 \,\mathrm{mC}$  charge

Praincel Philipsics

18. A dipole  $(q = \pm 10 \,\text{nC}, d = 1 \,\text{mm})$  is in a 500 N/C field. Calculate the maximum torque and potential energy difference between aligned and anti-aligned states. **(PPP)** 

Working and Answer:

### **Solution:**

Step 1: Dipole moment =  $qd = (10 \times 10^{-9})(0.001) = 1 \times 10^{-11} \,\mathrm{C} \cdot \mathrm{m}$ 

Step 2: Maximum torque =  $pE = (1 \times 10^{-11})(500) = 5 \text{ nN} \cdot \text{m}$ 

Step 3: Energy difference =  $2pE = 10 \,\text{nJ}$ 

raineel Philipsics

aneel Philippies

alleelRinig

19. Derive the electric field at distance z from a charged ring  $(Q=50\,\mathrm{nC},\,R=5\,\mathrm{cm})$  and calculate at  $z=3\,\mathrm{cm}$ . (PPPP)

Working and Answer:

Step 1: Linear charge density = 
$$\frac{Q}{2\pi R}$$
  
Step 2: Differential field components =  $\frac{k\lambda dl}{(z^2 + R^2)}\cos\theta$   
Step 3: Integrate around ring =  $\frac{kQz}{(z^2 + R^2)^{3/2}}$   
Step 4: Calculate at z=3 cm =  $\frac{(8.99 \times 10^9)(50 \times 10^{-9})(0.03)}{(0.03^2 + 0.05^2)^{3/2}}$   
=  $\boxed{1.08 \times 10^5 \, \text{N/C}}$ 

Praineel Philis .de 10 t **20.** Four  $+2\,\mu\mathrm{C}$  charges are arranged in a square (side 10 cm). Calculate the total potential R. r. atheel. R. energy of the system. (PPPP)

Step 1: Single pair energy = 
$$\frac{k(2 \times 10^{-6})^2}{0.10} = 0.3596 \,\text{J}$$

Step 2: Adjacent pairs 
$$(4) = 4(0.3596) = 1.438 \,\mathrm{J}$$

and Answer: 
$$\text{Step 1: Single pair energy} = \frac{k(2\times 10^{-6})^2}{0.10} = 0.3596\,\text{J}$$
 
$$\text{Step 2: Adjacent pairs } (4) = 4(0.3596) = 1.438\,\text{J}$$
 
$$\text{Step 3: Diagonal pairs } (2) = 2\left(\frac{k(2\times 10^{-6})^2}{0.10\sqrt{2}}\right) = 0.5086\,\text{J}$$
 
$$\text{Step 4: Total energy} = 1.438 + 0.5086 = \boxed{1.947\,\text{J}}$$

Step 4: Total energy = 
$$1.438 + 0.5086 = 1.947 \text{ J}$$

R. F. aline, e. I. F. I. F. A. I. F. A.

Phis

Physics

**21.** A +5  $\mu$ C charge moves from (2 m, 0) to (5 m, 4 m) in  $\mathbf{E} = 300 \,\hat{\imath} \,\text{N/C}$ . Calculate the work done. (PPPP)·aneel Ri

Working and Answer:

### Solution:

Step 1: Displacement in x-direction =  $5 - 2 = 3 \,\mathrm{m}$ 

Step 2: Force in x-direction =  $qE = (5 \times 10^{-6})(300) = 1.5 \text{ mN}$ 

raineel Physics

ancelenis

Step 3: Work along x-axis =  $F_x \Delta x = (1.5 \times 10^{-3})(3)$ 

Step 4: Total work =  $4.5 \,\mathrm{mJ}$ aneel Philipsics

raineel Pinis 22. Derive the capacitance of an isolated conducting sphere (radius R) and calculate for  $R = 6 \,\mathrm{cm}.$  (PPPP) raineel Ri raineel Pi

# Solution:

Step 1: Potential of sphere =  $\frac{kQ}{R}$ 

Step 2: Capacitance definition =  $\frac{Q}{V} = \frac{Q}{kQ/R}$ 

Step 3: Simplify =  $4\pi\epsilon_0 R$ 

R. R. Allie C. L. R. M. S. L. C. S. L. Step 4: Calculate =  $4\pi (8.85 \times 10^{-12})(0.06) = 6.67 \,\text{pF}$ 

Praineel Philis

a Ri

ol Pinisires

23. A parallel plate capacitor ( $C = 10 \,\mu\text{F}$ ) has its energy reduced to 1/5 original when a dielectric is inserted at constant voltage. Find the dielectric constant. (PPPP)

Solution:

Step 1: Original energy 
$$=\frac{1}{2}C_0V^2$$
  
Step 2: New energy  $=\frac{1}{2}\kappa C_0V^2 = \frac{1}{5}U_0$   
Step 3: Ratio  $=\frac{1}{\kappa} = \frac{1}{5}$   
Step 4: Dielectric constant  $=\boxed{5}$ 

aineel Philis

Phisics

raineel Philis 24. Calculate the electric field 3 cm from an infinite line charge with  $\lambda=2\,\mu{\rm C/m}$ . (PPPP) -μC

Working and Answer:

# Solution:

Step 1: Gauss's law setup = 
$$\oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q_{\text{enc}}}{\epsilon_0}$$

Step 2: Cylindrical symmetry = 
$$E(2\pi rL) = \frac{\lambda L}{\epsilon_0}$$

Step 3: Solve for 
$$E = \frac{\lambda}{2\pi\epsilon_0 r}$$

$$\begin{aligned} & \textbf{Working and Answer:} \\ & \textbf{Step 1: Gauss's law setup} = \oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q_{enc}}{\epsilon_0} \\ & \textbf{Step 2: Cylindrical symmetry} = E(2\pi rL) = \frac{\lambda L}{\epsilon_0} \\ & \textbf{Step 3: Solve for E} = \frac{2}{2\pi\epsilon_0 r} \\ & \textbf{Step 4: Calculate} = \frac{2\times 10^{-6}}{2\pi(8.85\times 10^{-12})(0.03)} = \boxed{1.20\times 10^6\,\mathrm{N/C}} \end{aligned}$$

Physics

**25.** Derive the capacitance per unit length of coaxial cable (inner radius  $a=1\,\mathrm{mm}$ , outer  $b=4\,\mathrm{mm},\,\kappa=3$ ) and calculate the value. **(PPPP)** 

Working and Answer:

Step 1: Gauss's law for inner conductor = 
$$E = \frac{\lambda}{2\pi\kappa\epsilon_0 r}$$

Step 2: Potential difference = 
$$\int_{a}^{b} E \, dr = \frac{\lambda}{2\pi\kappa\epsilon_{0}} \ln(b/a)$$

Step 3: Capacitance definition = 
$$\frac{\lambda L}{V} = \frac{2\pi\kappa\epsilon_0 L}{\ln(b/a)}$$

Step 4: Per unit length = 
$$\frac{2\pi\kappa\epsilon_0}{\ln(b/a)}$$

Step 5: Calculate = 
$$\frac{2\pi(3)(8.85 \times 10^{-12})}{\ln(4)} = 151 \,\text{pF/m}$$

**26.** Using Gauss's law, derive the electric field inside a uniformly charged sphere ( $\rho = 3 \,\mu\text{C/m}^3$ ,  $R = 10 \,\text{cm}$ ) at  $r = 4 \,\text{cm}$  from center. (**PPPP**)

Working and Answer:

Step 1: Enclosed charge = 
$$\rho\left(\frac{4}{3}\pi r^3\right) = (3 \times 10^{-6}) \left(\frac{4}{3}\pi (0.04)^3\right)$$
  
Step 2: Gauss's law =  $\oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q_{\text{enc}}}{\epsilon_0}$   
Step 3: Symmetry =  $E(4\pi r^2) = \frac{\rho_3^4 \pi r^3}{\epsilon_0}$   
Step 4: Solve for E =  $\frac{\rho r}{3\epsilon_0}$   
Step 5: Calculate =  $\frac{(3 \times 10^{-6})(0.04)}{3(8.85 \times 10^{-12})} = \boxed{4.52 \times 10^3 \,\text{N/C}}$ 

27. An electron enters parallel plates (5 cm long, 1 cm gap, 100 V) at  $1 \times 10^6$  m/s. Calculate the vertical deflection. (PPPPP)

Solution: Step 1: Field strength = 
$$\frac{100}{0.01} = 10,000 \text{ N/C}$$
  
Step 2: Acceleration =  $\frac{eE}{m} = \frac{(1.6 \times 10^{-19})(10^4)}{9.11 \times 10^{-31}} = 1.76 \times 10^{15} \text{ m/s}^2$   
Step 3: Time in field =  $\frac{0.05}{1 \times 10^6} = 50 \text{ ns}$   
Step 4: Vertical displacement =  $\frac{1}{2}at^2 = \frac{1}{2}(1.76 \times 10^{15})(50 \times 10^{-9})^2$   
=  $\boxed{2.20 \text{ mm}}$ 

28. Derive the potential due to a dipole and calculate at point (3 cm, 4 cm) from center  $(p = 2 \times 10^{-10} \,\mathrm{C} \cdot \mathrm{m})$  oriented along x-axis. (PPPPP)

Working and Answer:

Step 1: Dipole potential formula = 
$$\frac{k\mathbf{p} \cdot \mathbf{r}}{r^3}$$
  
Step 2: Position vector =  $(0.03, 0.04)$  m,  $r = 0.05$  m  
Step 3: Angle calculation =  $\cos \theta = \frac{0.03}{0.05} = 0.6$   
Step 4: Potential =  $\frac{(8.99 \times 10^9)(2 \times 10^{-10})(0.6)}{(0.05)^2}$   
=  $\boxed{43.2 \, \text{mV}}$ 

**29.** Show the energy density in electric field is  $\frac{1}{2}\epsilon_0 E^2$  and calculate for  $E=5\,\mathrm{MV/m}$ . (PPPP) R. t. atheol. R. hayes

Working and Answer:

Solution:

Step 1: Capacitor energy = 
$$\frac{1}{2}CV^2$$

Step 2: Express in terms of  $E = \frac{1}{2}\left(\frac{\epsilon_0A}{d}\right)(Ed)^2$ 

Step 3: Energy density =  $\frac{U}{Ad} - \frac{1}{2}\epsilon_0E^2$ 

Step 4: Calculate =  $\frac{1}{2}(8.85 \times 10^{-12})(5 \times 10^6)^2$  =  $\frac{110.6 \text{ J/m}^3}{4}$ 

Physics

30. Derive the oscillation frequency of a dipole ( $p=5\times10^{-10}\,\mathrm{C\cdot m},\ I=2\times10^{-26}\,\mathrm{kg\cdot m^2}$ ) in  $E=1\,\mathrm{kN/C}.$  (PPPP)

Working and Answer:

# Solution:

Step 1: Torque equation = 
$$-pE\sin\theta \approx -pE\theta$$

Step 2: Angular acceleration = 
$$\alpha = \frac{\tau}{I} = -\frac{pE}{I}\theta$$

Step 3: SHM equation = 
$$\frac{d^2\theta}{dt^2} + \frac{pE}{I}\theta = 0$$

Step 4: Angular frequency = 
$$\omega = \sqrt{\frac{pE}{I}}$$

Step 5: Calculate = 
$$\sqrt{\frac{(5 \times 10^{-10})(1000)}{2 \times 10^{-26}}} = 1.58 \times 10^{10} \,\text{rad/s}$$

alleel Ri

Physics